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ADVANCING SOIL EROSION PREDICTION IN WADI                
SAHEL-SOUMMAM WATERSHED ALGERIA: A COMPARATIVE 
ANALYSIS OF DEEP NEURAL NETWORKS (DNN) AND       
CONVOLUTIONAL NEURAL NETWORKS (CNN) MODELS      
INTEGRATED WITH GIS  

 
Abstract: This study employs adaptive deep learning (utilizing DNN and CNN approaches) to 

accurately predict soil erosion, a crucial aspect of sustainable soil resource management. The 

goal is to develop fuzzy logic models for erosion forecasting in a large watershed with limited in-

puts, comparing them to predictions from the Revised Universal Soil Loss Equation (RUSLE). 

Integration of GIS enables analysis of satellite data, providing crucial details like land use, slope, 

rainfall distribution, and flow direction. This synergistic approach enhances erosion prediction 

capabilities and yields spatial erosion distributions. Producing precise erosion risk maps within 

GIS is crucial for prioritizing high-risk areas and implementing effective conservation methods 

in the Wadi Sahel watershed, Algeria. The assessment in the Oued Sahel-Soummam watershed 

involved overlaying five RUSLE factor maps using Arc GIS spatial analysis, resulting in an aver-

age annual soil loss of 4.22 tons per hectare. The DNN and CNN models were integrated with 

GIS for detailed calculation of annual average soil loss (tons per hectare per year) and mapping 

erosion risk areas in Wadi Sahel-Soummam watershed. Using the CNN model, estimated annual 

soil loss in Sahel-Soummam wadi was about 4.00 tons per hectare per year, while the DNN 

model estimated around 4.13 tons per hectare per year. This study employed two deep learning 

models for erosion prediction, with the DNN model featuring six hidden layers performing no-

tably better than the compared CNN model. 

Key words: soil erosion, deep neural network, convolutional neural network, modelling, 

GIS, RUSLE, watershed 
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Introduction 

Soil erosion is the most significant spatio-temporal phenomena, and the main environmental 

problems observed in the countries of North Africa. (Djeddou et al., 2019).  Among the conse-

quences of this phenomenon of erosion have been the degradation of land resources. Soil 

erosion is influenced by a variety of factors. Rainfall intensity and volume play a crucial role; 

intense and prolonged rainfall events increase the erosive force of water, resulting in more 

significant soil erosion (Anderson et al., 2021). Additionally, steep slopes are more susceptible 

to erosion as gravity accelerates the movement of water and sediment downslope (Sidle, 

2006). Soil type and texture also play a role; soils with low organic matter content, poor struc-

ture, and coarse texture are more prone to erosion. Furthermore, vegetation cover, such as 

dense grasses and trees, acts as a natural barrier against erosion by slowing down runoff and 

stabilizing the soil. Changes in land use and land cover, including deforestation, urbanization, 

and the conversion of natural land to agriculture, can significantly increase erosion rates (Ala-

wamy, 2021). Poor land management practices, such as overgrazing, improper tillage, and 

inadequate crop cover, can exacerbate soil erosion. Additionally, soil moisture content plays a 

critical role; dry, compacted soils are more prone to erosion compared to well-moistened soils 

that can absorb and retain water. Implementing erosion control practices like contour plowing, 

terracing, and buffer strips can effectively mitigate erosion (Panagos, 2015). This can lead to a 

decline in soil fertility, a series of negative impacts on environmental problems, and can 

threaten the storage capacity of dams, as well as agricultural production. The loss of biodiversi-

ty is another significant concern associated with soil erosion. Particularly in riparian zones, soil 

erosion can destroy habitats, leading to the loss of diverse plant and animal species. This dis-

ruption of ecological communities has cascading effects on the broader ecosystem (Montgom-

ery, 2007). Additionally, soil erosion can exacerbate the risk of flooding and landslides. The 

sedimentation of water bodies increases the likelihood of flooding events, while the removal of 

stabilizing vegetation can lead to landslides, especially in areas with steep terrain (Favis-

Mortlock et al., 2003). Soil erosion is not only an issue of physical disruption; it also contrib-

utes to air and water pollution. Eroded sediments can transport pollutants like pesticides, 

heavy metals, and pathogens. These contaminants pose significant risks to both water bodies 

and air quality, with potential impacts on human and environmental health (Lal, 2003). Last-

ly, soil erosion comes with substantial economic costs. Reduced agricultural yields, increased 

expenses for water treatment, and damage to infrastructure contribute to a significant finan-

cial burden. These costs can have widespread economic implications for affected regions 

(Nkonya et al., 2006). Geographical Information System (GIS) is a valuable tool in developing 

environmental models through their advance features of data storage, management, analysis, 

and display (Burrough et al. 1998). Generating accurate erosion risk maps in GIS environment 

is very important to locate the areas with high erosion risks for prioritization and to develop 

adequate conservation techniques (Vrieling et al., 2002). Soil erosion modeling is a complex 

dynamic process by which productive surface soil is detached, transported and accumulated 

over a distant place resulting in exposure of sub-surface soil, and siltation in reservoirs or 

natural streams (Verma et al., 1995). Jasrotia et al. (2002) indicated that modelling soil ero-

sion can be used as predictive tool for:  

• Assessing soil loss for conservation planning; 

• Project planning;  

• Soil erosion inventories and for formulating regulations.  
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Physical based mathematical models can predict where and when erosion is occurring, 

thus helping the conservation planet target to reduce erosion; Models can be used as a tool for 

understanding process and their interaction for setting research priorities. 

Bonilla et al. (2009) used RUSLE in combination with GIS for evaluation of the effects of 

different combinations of vegetative cover on soil erosion rates for Santo Domingo County in 

Central Chile. The information was compiled in raster of 25 × 25 m cells. RUSLE parameter 

values were assigned to each cell and annual soil loss estimates were generated on a cell-by-cell 

basis. Soil loss estimated for the current and for three alternate scenarios of vegetative cover. 

Under current cover conditions, 39.7% of the county is predicted to have low erosion rates 

(< 0.1 tons/ha/yr), 39.8% has intermediate rates (0.1 to 1.0 tons/ ha/yr), and 10.4% has high 

erosion rates (>1.1 tons/ha/yr). Under the recommended alternate scenario, 89.3% of the 

county was predicted to have low erosion rates, and no areas were affected by high soil loss, 

reduced soil erosion to a level that was not affecting long term productivity. RUSLE model and 

GIS techniques for determination of the soil erosion vulnerability of a forested mountainous 

sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by 

integrating geo-environmental variables in a raster-based GIS method. The resultant map of 

annual soil erosion showed a maximum soil loss of (17.73 tons/ha/year) with a close relation to 

grass land areas, degraded forests and deciduous forests on steep side-slopes. Kamaludin et al. 

(2013) used RUSLE model to estimate the sediment losses, in the GIS environment within 

selected sub-catchments of Pahang River basin Malaysia. 

Jaiswal et al. (2014) applied RUSLE model in Panchnoi river basin of North East India, 

which causes serious fluvial hazards in downstream areas. Values were assigned to different 

soil erosion parameters such as rainfall, soil types, relief, slope, and land use and land cover 

base on scientific principles to generate GIS layers using ArcInfo 9.3 software. The study 

disclosed the parametric impact of erosion parameters in the basin. It was found that soil 

types and vegetation cover played major role in soil erosion scenario of whole basin and 

rainfall has a great control over soil erosion. The study revealed that soil erosion risk in 

degraded hilly section was quite high and the area required soil conservation practices to 

attain sustainability in the region. 

Kartic et al. (2014) used RUSLE model within GIS environment to investigate the spatial 

distribution of annual soil loss potential in the Kothagiri Taluk. Both magnitude and spatial 

distribution of potential soil erosion in the catchment were determined. GIS data layers includ-

ing, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover manage-

ment (C) and conservation practice (P) factors were computed for determining their effects on 

average annual soil loss. The resultant map of annual soil erosion showed a maximum soil loss 

of (27.11 tons/ha/year) with a close relation to built-up land areas, crop land and forest planta-

tion on the steep side-slopes.  

Recently, application of machine learning (ML) techniques (e.g., artificial neural net-

work, adaptive neuro-fuzzy inference system and support vector machines) in environmen-

tal modelling, espeially hydrological processes have received much attention from the re-

searchers (Mohammadi, 2021). 

The objective of this research is to assess the susceptibility to soil erosion in the northeast-

ern Algerian region of Wadi Sahel-Soummam. This will be accomplished through the applica-

tion of a sophisticated deep learning model, utilizing both Deep Neural Network (DNN) and 
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Convolutional Neural Network (CNN) methodologies. The validity of these models will be 

confirmed by comparing their results with those obtained from the empirical RUSLE model. 

Materials and Methods 

Presentation of the study area 

The catchment area of the Wadi Sahel-Soummam is located in the North-eastern part of Alge-

ria between 3° 60' and 4° 70' of longitude Is and between 36° 00' and 36° 50' of Northern 

latitude. The catchment area of Wadi Sahel-Soumam extending according to a Northwestern 

axis. It is composed of area: plates of Bouira. It is limited: 

In North: by the Large Kabylie’s Mountains (Djurdjura Massif), in the East: by the Small 

Kabylie Mountains, in the South: by the Bibans and Mansourah’s Mountains. in South-East by 

Hodna’s mountains buttressing, and in the West: it is limited by the courses of Isser, and 

Sébaou. It presents a very irregular form Figure 1 and Table 1 (Mokhtari et al., 2017). 

 

Fig. 1. Localization of the study area (Mokhtari et al., 2017) 
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Tab. 1. Morphometric characteristics of Wadi Sahel-Soummam watershed (Mokhtari et al., 2017) 

Parameters Values 

Area 3736 km2 

Perimeter 360 km 

Index compactness of Gravelius KG 1.64 

Maximum altitude 2308 m 

Minimum altitude 173 m 

Average altitude 783 m 

Equivalent rectangle width le 41 km 

Equivalent rectangle length Le 91 km 

The RUSLE model 

The RUSLE is a standardized soil erosion prediction equation that can be used for many 

land use situations. The RUSLE model is based on the USLE erosion model structure 

which was developed by Wischmeier & Smith (1978) and improved and modified by Re-

nard et al. (1997) as RUSLE model. The procedure for estimation of annual soil loss using 

RUSLE integrated with ArcGIS has been described by Soo Huey Teh (2011). The RUSLE 

has been widely used for both agricultural and forest watersheds to predict the average 

annual soil loss by introducing improved means of computing the soil erosion factors 

(Wischmeier & Smith 1978). This equation is a function of five input factors in raster data 

format i.e. rainfall-runoff erosivity, soil erodability, slope length and steepness, cover 

management and support practice. These factors vary over space and time and depend on 

other input variables. 

A=R×K×LS×C×P     (1) 

Where: 

A: is the computed soil loss per unit area, expressed in the units selected for K and for 

the period selected for R ; R: the rainfall and runoff factor, is the number of rainfall ero-

sion index units, plus a factor for runoff from snowmelt or applied water where such run-

off is significant; K: the soil erodibility factor, is the soil loss rate per rainfall erosion index 

unit; L and S are the slope length and steepness factors; C: the cover and management 

factor, (C thus ranges from a value of zero for completely non-erodible conditions, to a 

value of 1.0 for the worst-case); and P, the support practice factor, is the ratio of soil loss 

with a support  practice like contouring, stripcropping, or terracing to that with straight-

row farming up and down slope (Renard et al., 2011). 

RUSLE has been formulated by data recording review from plot of land erosion of 

the unit that having a fix length of 72.6 feet (which is 22.1 m) and a fix slop of about 

9% (or 5.14 degrees). L.S.C and factor P adjust real conditions compared to experi-

mental plots conditions on the ground. These factors represent reports and are with-

out dimension (Mokhtari et al., 2017). 

The soil erosion intensity map generated had the values categorized using The Jenks 

optimization (the natural breaks classifcation method) into five soil erosion classes, i.e., 

very weak (<3), weak (3-6), moderate (6-9), strong (9-12), and very strong (>12). 

Deep Neural Networks  

A deep neural network (DNN) is an artificial neural network (ANN) that has multiple 

hidden layers between the input and output layers. DNNs, like shallow ANNs, can mod-
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el complex non-linear relationships. An ANN's main goal is to solve real-world prob-

lems like classification by receiving inputs, performing calculations, and producing 

outputs. This research focuses on forward-feeding neural networks, which have an 

input, an output, and a sequential data flow. Deep learning can have a large number of 

hidden layers, which are mostly non-linear. The number of hidden layers in this study 

was set to 5 (Mokhtari et al., 2023). 

The Deep Neural Network (DNN) is the fundamental architecture of neural networks, 

and it is modeled after the information processing capabilities of the human brain (Aga-

tonovic-Kustrin & Beresford, 2000). DNNs are made up of neurons that improve as they 

learn. The layers are fully connected, which means that each neuron in a layer receives 

input from all neurons in the previous layer and serves as input to all neurons in the sub-

sequent layers (Figure 2). DNNs have been used in regression analysis, classification, and 

unsupervised data clustering across many engineering fields due to their ability to analyze 

intricate data patterns (Agatonovic-Kustrin & Beresford, 2000).  

The soil erosion intensity map generated had the values categorized using the Jenks 

optimization (the natural breaks classification method) into five soil erosion classes, i.e., 

very weak (<3), weak (3-6), moderate (6-9), strong (9-12), and very strong (>12). 

 

Fig. 2. Deep Neural Network. (Source: own elaboration) 

Convolutional Neural Networks 

Convolutional neural networks are a variety of feed-forward neural networks with multi-

ple layers, some of which contain one or more convolutions (LeCun et al., 2015). Input, 

output, and hidden layers can be included. While the hidden layer frequently handles 

multiplication or dot product operations, the input and output layers serve the self-

explanatory purposes. The network can be built with various layer types, including fully 

connected, normalizing, and pooling layers (Baek et al., 2020). 

Through a simple but exact architecture, CNNs can efficiently map a large data set to 

an output (Figure 3). It performs better than DNNs, especially when analyzing visual 

images, thanks to its weight sharing structure and pooling techniques that allow for a 

reduction in the number of parameters. It's important to note that CNNs are spatially 

invariant, which means they cannot detect an object's position or orientation. Thus, CNNs 

may not be a good choice if data position is important. CNNs are now frequently used in a 

variety of water and wastewater treatment applications. 
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Fig. 3. Convolutional Neural Network (Source: own elaboration) 

The Python-based Keras library, which offers an interface for deep learning, was used 

to build the models. Since mean-squared-error (MSE) is more sensitive to large errors 

than mean absolute error, it was chosen as the loss function. The CNN model was opti-

mized using the Adam optimizer, and the RMSprop method was used to optimize the 

DNN model. The same 182 sample dataset from which both models were trained was 

randomly split into training and testing sets in the proportion of 70:30. The values of the 

chosen hyperparameters are shown in Table 2. 

The soil erosion intensity map generated had the values categorized using the Jenks 

optimization (the natural breaks classification method) into five soil erosion classes, i.e., 

very weak (<3), weak (3-6), moderate (6-9), strong (9-12), and very strong (>12). 

Tab. 2. Developed Models Description 

 CNN model DNN model 

Input shape (n, 5, 1) (n, 5) 

Number of layers Total of 7 Total of 7 

Batch size 8 16 

Number of epochs 500 500 

Loss function MSE MSE 

Optimizer RMSprop RMSprop 

Learning rate  0.001 0.005 

Number of parameters 23041 6721 

Results and Discussion 

Annual soil erosion estimation using RUSLE model 

In this study, the RUSLE model was integrated with GIS to conduct cell-by-cell calculation 

of average annual loss rate (tons/ha/year) and to identify and map soil erosion risk areas in 

the Wadi Sahel-Soummam watershed from different data sources (Mokhtari et al., 2017). 

The erosion risk assessment in Wadi Sahel-Soummam watershed was performed by 

overlaying the five RUSLE factor maps using ArcGIS spatial analyst. The average annual 

soil loss in the Wadi Sahel-Soummam watershed was 4.22 tons/ha/year. As can be seen 

from the soil erosion map (Figure 4), the highest values of estimated soil erosion potential 
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that were around 24 tons/ha/year occurred in the North eastern part of the watershed 

due to their high LS-factor values and an abrupt change in slope.  

 

Fig. 4. The annual average soil loss map of the Wadi Sahel-Soummam watershed using RUSLE 
model 

The estimation of soil erosion area coverage indicated that approximately 7773 ha 

(about 2.08%) of the study watershed showed strong water erosion and, consequently, 

high erosion risk. However, lower soil erosion occupied 14,858,364.88 ha (39.67%). The 

distribution of earth losses is not proportional to the areas as shown in Figure 4, as an 

indication 39.45% of the total watershed area contribute to 40.37% of total losses. The 

total annual losses of the basin are 1,494,698.57 tons/year (Figure 5). 

 

Fig. 5. Erosion risk classes of the Wadi Sahel-Soummam watershed using RUSLE model. 

It was noticed that this analysis of soil erosion problems carried out by RUSLE ap-

proach provided important synthetic and systematic information on the nature, intensity, 
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and spatial distribution of a phenomenon and therefore allowed identifying the most 

affected areas and the types of dominant erosion in the long term 

Annual soil erosion estimation using DNN model 

The data predicted by the developed DNN model was integrated with GIS to conduct cell-

by-cell calculation of the annual average soil loss rate (tons/ha/year) and to identify and 

map the soil erosion risk areas in the Wadi Sahel-Soummam watershed. 

The erosion risk assessment in Wadi Sahel-Soummam watershed was performed by 

using ArcGIS spatial analyst. The average annual soil loss in the Wadi Sahel-Soummam 

watershed was 4.13 tons/ha/year. As can be seen from the soil erosion map (Figures 6 and 

7), the highest values of estimated soil erosion potential that were around 19.8 

tons/ha/year occurred in the North eastern part of the watershed due to their high LS-

factor values and an abrupt change in slope.  

 

Fig. 6. The annual average soil loss map of the Wadi Sahel-Soummam watershed using DNN model 

  
Fig. 7. Erosion risk classes of the Wadi Sahel-Soummam watershed using DNN model 
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Annual soil erosion estimation using CNN model 

The data predicted by the developed CNN model was integrated with GIS to conduct cell-

by-cell calculation of the annual average soil loss rate (tons/ha/year) and to indentifiy and 

map the soil erosion risk areas in the Wadi Sahel-Soummam watershed. 

The erosion risk assessment in Wadi Sahel-Soummam watershed was performed by 

using ArcGIS spatial analyst. The average annual soil loss in the Wadi Sahel-Soummam 

watershed was 4.00 tons/ha/year. As can be seen from the soil erosion map (Figures 8 

and 9), the highest values of estimated soil erosion potential that were around 14.9 

tons/ha/year occurred in the North eastern part of the watershed due to their high LS-

factor values and an abrupt change in slope.  

 

Fig. 8. The annual average soil loss map of the Wadi Sahel-Soummam watershed using CNN model 

 

 

Fig. 9. Erosion risk classes of the Wadi Sahel-Soummam watershed using CNN model 
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Comparative study of the annual soil erosion estimation 

The RUSLE model was integrated with a GIS for a detailed cell-by-cell calculation of aver-

age annual soil loss, resulting in an estimation of 4.22 tons per hectare per year. This 

approach also identified erosion risk areas, highlighting approximately 7773 hectares, or 

about 2.08% of the watershed, exhibiting intense water erosion and consequently, a high 

erosion risk. On the other hand, a vast area of 14,858,364.88 hectares, or roughly 39.67% 

of the watershed, showed lower erosion rates. An interesting observation was that the 

distribution of soil losses did not correspond proportionally to the areas, indicating that 

39.45% of the total watershed area contributed to 40.37% of total losses, emphasizing 

significant variations in erosion levels across different zones of the watershed. Overall, the 

RUSLE model provided crucial synthetic and systematic information, offering detailed 

insights into the nature, intensity, and spatial distribution of the phenomenon, as well as 

identifying the most affected areas and dominant erosion types in the long term. Regard-

ing the DNN model, specific details regarding erosion risk areas and the distribution of 

soil losses are not provided in the text. However, it is noted that the DNN model estimat-

ed the annual soil loss at 4.13 tons per hectare per year, slightly lower than that of the 

RUSLE model. Similarly, for the CNN model, while the average annual soil loss was esti-

mated at 4.00 tons per hectare per year, detailed information on erosion risk areas and 

the distribution of soil losses is not specified. Thus, while the DNN and CNN models offer 

slightly lower estimates for annual soil loss compared to the RUSLE model, additional 

details on erosion risk areas and the distribution of soil losses are necessary for a more 

comprehensive assessment of these two models. 

 

Fig. 10. Comparative study of the annual soil erosion estimation 

Conclusion 

This study indicated that using Deep Learning (DL) models and GIS technologies for soil 

erosion mapping resulted in accurate assessment of soil erosion for Wadi-Sahel Soumam 

watershed is necessary to soil management and water conservation measures at water-

shed scale in order to conserve the natural resources. Deep Neural Network (DNN) and a 

Convolutional Neural Network (CNN) were compared for prediction performance and 

ease of use. In the training phase, the results showed that both models could predict soil 
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erosion accurately, with the DNN model being quicker. The testing results demonstrate 

that the DNN model outperforms the CNN model in terms of prediction accuracy. The 

CNN has a longer computation time and more training data requirements due to its great-

er number of parameters. Choosing the right input parameters, architecture, and hy-

perparameters is essential for producing accurate predictions; however, doing so may 

increase the CNN model's training data requirements and computation time. 

The deep neural networks (DNN) model presented excellent capability in hydrological 

process modelling. Comparing DNN model with RUSLE model indicates that these models 

are very powerful tools to handle complicated problems. In this study, outcome data showed 

that ELM models are very capable of modelling soil loss rate, confirming the general en-

hancement achieved by using neural networks in many other hydrological fields. 

This quantitative map can be an indispensable tool for the integrated management of 

soils, and gives relatively reliable results that can be of great help to the region's decision-

makers and planners with the aim of simulating evolution scenarios and consequently 

targeting the priority areas that require conservation actions against erosion. 
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