Gis application in analysis of erosion intensity in the Vlasina River Basin
Abstract
This paper analyses the state of erosion intensity in the Vlasina River Basin, the right tributary of the Južna Morava River. To determine the erosion intensity (Z) and sediment production, the Gavrilović method was used, in combination with the bare-soil index (BSI), with the application of geographic information systems (GIS) and multispectral satellite imagery. An erosion coefficient of 0.31 has been identified in the territory of the Vlasina River Basin, which has an area of 1,061.72 km². The prominent vertical fragmentation of the relief, large amount of precipitation in the source parts, density of the river network (1.65 km/km2), which is above the average river network density in Serbia, as well as inadequate land exploitation, are the main reasons why it is necessary to monitor the erosion intensity in the Vlasina River Basin. The annual production of the sediment is 462,496.30 m³, while the value of specific sediment production is 435,47 m³/km²/year. This study represents the attempt to apply modern technologies to d1etermine the intensity of erosion in the Vlasina River Basin, and the results obtained could be used for more adequate management of land and water resources, sustainable planning of the forest ecosystems and environmental protection.
Key words: Gavrilović method, erosion coefficient, bare-soil index, sediment production, Vlasina River Basin
© 2019 Serbian Geographical Society, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 SerbiaFull Text:
PDFReferences
Alam, A. (2014). Soil Degradation: A Challenge to Sustainable Agriculture. International Journal of Scientific Research in Agricultural Sciences, 1 (4), 52.
Ananda, J. & Herath, G. (2003). Soil erosion in developing countries: a socio-economic appraisal. Journal of Environmental Management, 68, 343-353.
Balasubramanian, A. (2017). Soil Erosion – Causes and Effects. University of Mysore, 1-5.
Blanco, H. & Lal, R. (2010). Principles of Soil Conservation and Management, Springer, New York.
de Vente, J., Poesen, J. & Verstraeten, G. (2005). The application of semiquantitative methods and reservoir sedimentation rates for the prediction of basin sediment yield in Spain. Journal of Hydrology, 305, (1-4), 63-86.
Dragićević, S., Filipović, D., Kostadinov, S., Ristić, R., Novković, I., Živković, N., Anđelković, G., Abolmasov, B., Šećerov, V. & Đurđić, S. (2011). Natural hazard assessment for land-use planning in Serbia. Int. J. Environ. Res., 5 (2), 71–380.
El Haj El Tahir, M., Kääb, A. & Xu, C. Y. (2010). Identification and mapping of soil erosion areas in the Blue Nile, Eastern Sudan using multispectral ASTER and MODIS satellite data and the SRTM elevation model. Hydrol. Earth Syst. Sci., 14, 1167–1178.
Eswaran, H., Lal, R. & Reich, P. F. (2001). Land degradation: an overview. Science, Enfield, 20–35.
Gavrilovic, Z., Stefanovic, M. & Milojevic, M. (2004). Application of methodology for the real-time torrent flood forecasting. Internationales symposion: Interpraevent 2004 – Riva, Trient.
Gavrilović, S. (1972). Inženjering o bujičnim tokovima i eroziji, Časopis "Izgradnja", Specijalno izdanje, Beograd, 1-292.
Gomes de Souza, F., Ferreira Melo, V., Farias Araújo, W. & Henrique de Castro Araújo, T. (2018). Losses of soil, water, organic carbon and nutrients caused by water erosion in different crops and natural savannah in the northern Amazon, Ambiente & Água - An Interdisciplinary Journal of Applied Science, 40(1), 1-5.
Group of authors, (1990). Commune Štrpce, Sirinićka župa, Trait of natural environment, Special issues – No. 37/1, 160-166, SASA, Geographical institute ''Jovan Cvijić'', Belgrade.
Guo, S. Y. & Li, Z. G. (2009). Development and achievements of soil and water conservation monitoring in China, Sci. Soil Water Conserv., 7, 19–24.
Hazarika, M. & Honda, K. (2001). Estimation of Soil Erosion Using Remote Sensing and GIS, Its Valuation and Economic Implifation on Agricultural Products. In D.E. Stott, R.H. Molnar and G.C. Steinhardt (eds.). Sustaining the Global Farm.
Ighodaro, I.D., Lategan, F.S. & Yusuf, S.G.F. (2013). The Impact of Soil Erosion on Agricultural Potential and Performance of Sheshegu Community Farmers in the Eastern Cape of South Africa, Journal of Agricultural Science, 5, 140.
Kirkby, M. J., Irvine, B. J., Jones, R. J. A., Govers, G., Boer, M., Cerdan, O., Daroussin, J., Gobin, A., Grimm, M., Le Bissonnais, Y., Kosmas, C., Mantel, S., Puigdefabregas, J. & van Lynden, G. (2008). The PESERA coarse scale erosion model for Europe. I. – Model rationale and implementation, Eur. J. Soil Sci., 59, 1293–1306.
Kostadinov, S., Braunović, S., Dragićević, S., Zlatić, M., Dragović, N. & Rakonjac, N. (2018). Effects of erosion control works: Case study - Grdelica Gorge, the South Morava River (Serbia), Water, 10, 1-18.
Lazarević, R. (1975): Geomorfologija [Geomorphology], Institut za šumarstvo i drvnu industriju, Posebno izdanje XXXVIII, Beograd.
Lazarević, R. (1983). The Erosion Map of Serbia. Scale 1:500000; Institute of Forestry: Belgrade, Serbia.
Le Roux, J. J., Newby, T. S. & Sumner, P. D. (2007). Monitoring soil erosion in South Africa at a regional scale: review and recommendations, S. Afr. J. Sci., 207, 329–335.
Lovrić, E. & Tošić, R. (2018). Assessment of soil erosion and sediment yield using erosion potential method: Case study – Vrbas River Basin (B&H), Bulletin of the Serbian Geographical Society, 98(1).
Milevski, I., Dragićević, S. & Kostadinov, S. (2007). Digital elevation model and satellite images an assesment of soil erosion potential in the Pcinja catchment. Bulletin of the Serbian Geographical Society, 87(2), 12–19.
Mustafić, S. (2012). Geografski faktori kao determinante intenziteta erozije na primeru sliva Nišave. Doktorska disertacija. Geografski fakultet, Univerzitet u Beogradu.
Mutekanga, F. P., Visser, S. M. & Stroosnijder, L. (2010). A tool for rapid assessment of erosion risk to support decision-making and policy development at the Ngenge watershed in Uganda, Geoderma, 160, 165–174.
Novković, I. (2016). Prirodni uslovi kao determinante geohazarda na primeru slivova Ljiga, Jošaničke i Vranjskobanjske reke. Doktorska disertacija, Geografski fakultet, Univerzitet u Beogradu.
Ristić, R., Kostadinov, S., Albomasov, B., Dragićević, S., Trivan, G., Radić, B., Trifunović, M. & Radosavljević, Z. (2012). Torrential floods and town and country planning in Serbia. Nat. Hazards Earth Syst. Sci., 12, 23–35.
Tošić, R., Dragićević, S. & Lovrić, N. (2012). Assessment of soil erosion and sediment yield changes using erosion potential model – case study: Republic of Srpska (BiH). Carpathian journal of earth and environmental sciences, 7 (4), 147-154.
Urošević, M., Stefanović, M., Milovanović, I. & Jovičić, A. (2016). Demografske promene u slivu reke Vlasine kao faktor promene intenziteta erozije, Erozija – časopis za uređenje bujica i zaštitu od erozije, 42, 41.
Ванчетовић, Ж. (1966). Ерозија земљишта и бујице у СР Србији, Заштита природе, 32/1966, Београд. [Vančetović, Ž. (1966). Erozija zemljišta i bujice u SR Srbiji, Zaštita prirode, 32/1966, Beograd.]
Verstraeten, G., Poesen, J., de Vente, J. & Koninck, X., (2003). Sediment yield variability in Spain: a quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology, 50, 4, 327-348.
Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review, Catena, 65, 2–18.
Yin, Sh., Zhu, Zh., Wang, L., Liu, B., Xie, Y., Wang, G. & Li, Y. (2018). Regional soil erosion assessment based on a sample survey and geostatistics, Hydrol. Earth Syst. Sci., 22, 1695.
Refbacks
- There are currently no refbacks.