Java and Sumatra segments of the Sunda Trench: Geomorphology and geophysical settings analysed and visualized by GMT
Abstract
The paper discusses the geomorphology of the Sunda Trench, an oceanic trench located in the eastern Indian Ocean along the Sumatra and Java Islands of the Indonesian archipelago. It analysis difference in depths and variation in slope steepness between the two segments of the trench: southern Java transect (108.8°E 10.10°S - 113.0°E 10.75°S) and northern Sumatra transect (97.5°E 1.1°S - 101.0°E 5.5°S). The maps and geomorphological modelling were plotted using Generic Mapping Tools (GMT). The data include high-resolution grids on topography, geology, geodesy and geophysics: GEBCO, EGM2008 EGM-2008, GlobSed. The results include modelled segments, slope gradients, and cross-section profiles. The geological processes take place in the Indian Ocean at different stages of its evolution and influence the nature of the submarine geomorphology and geomorphology of the trench that differs in two segments. Java segment has a bell-shaped data distribution in contrast to the Sumatra with bimodal pattern. Java segment has the most repetitive depths at -2,500 to -5,200 m. Sumatra transect has two peaks: 1) a classic bell-shaped peak (-4,500 m to -5,500 m); 2) shelf area (0 to -1,750 m). The data at middle depths (-1,750 to -4,500 m) have less than 300 samples. The most frequent bathymetry for the Sumatra segment corresponds to the -4,750 m to -5,000 m. Comparing to the Sumatra segment, the Java segment is deeper. For depths > -6,000 m, there are only 138 samples for Sumatra while 547 samples for Java. Furthermore, Java segment has a more symmetrical geometric shape while Sumatra segment is asymmetric, one-sided. The Sumatra segment has a steepness of 57.86° on its eastern side (facing Sumatra Island) and a contrasting 14.58° on the western part. The Java segment has a steepness of 64.34° on its northern side (facing Java Island) and 24.95° on the southern part (facing the Indian Ocean). The paper contributes to the studies of the submarine geomorphology in Indonesia.
Key words: Submarine Geomorphology, GMT, Sunda Trench, Indian Ocean, geology, cartography, mapping
© 2020 Serbian Geographical Society, Belgrade, Serbia.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Serbia
Full Text:
PDFReferences
Ashadi, A. L. & Kaka, S. I. (2019). Ground-Motion Relations for Subduction-Zone Earthquakes in Java Island, Indonesia. Arabian Journal for Science and Engineering, 44, 449–465. https:// doi.org/10.1007/s13369-018-3563-x.
Audley-Charles, M. G., Ballantyne, P. D. & Hall, R. (1988). Mesozoic-Cenozoic rift-drift sequence of Asian fragments from Gondwanaland. Tectonophysics, 155, 317–330. https://doi.org/10.1016 /0040-1951(88)90272-7.
Audley-Charles, M. G. (2004). Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope. Tectonophysics, 389(1–2), 65–79. https://doi.org/10. 1016/j.tecto.2004.07.048.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G. & Weatherall, P. (2009). Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32, 355–371.
Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3), 1027. https://doi.org/10.1029/2001GC000252.
Charlton, T. R. (2000). Tertiary evolution of the eastern Indonesia collision complex. Journal of Asian Earth Sciences, 18(5), 603–631. https://doi.org/10.1016/S1367-9120(99)00049-8.
Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H. & Galetzka, J. (2008). Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. Journal of Geophysical Research, 113, B05305. https://doi.org/10.1029/2007JB004981.
Das, S. (2004). Seismicity gaps and the shape of the seismic zone in the Banda Sea region from relocated hypocenters. Journal of Geophysical Research, 109, B12303. https://doi.org/10.1029 /2004JB003192.
DeMets, C., Gordon, R. G. & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.
Dewi, R. S., Hartanto, P., Oktaviani, N., Pujawati, I., Nursugi, N. & Aditya, S. (2019). Satellite-derived bathymetry to improve bathymetric map of Indonesiaю Proc. SPIE 11372, Sixth International Symposium on LAPAN-IPB Satellite, 113721N. https://doi.org/10.1117/12.254 0779.
Ekström, G., Nettles, M. & Dziewoński, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002.
Elburg, M. A., Foden, J. D., Van Bergen, M. J. & Zulkarnain, I. (2005). Australia and Indonesia in collision: Geochemical sources of magmatism. Journal of Volcanology and Geothermal Research, 140(1–3), 25–47. https://doi.org/10.1016/j.jvolgeores.2004.07.014.
Ely, K. S. & Sandiford, M. (2010). Seismic response to slab rupture and variation in lithospheric structure beneath the Savu Sea, Indonesia. Tectonophysics, 483(1–2), 112–124. https:// doi.org/10.1016/j.tecto.2009.08.027.
Gao, J. (2009). Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography: Earth and Environment, 33(1), 103-116. https:// doi.org/10.1177/0309133309105657.
Gasparon, M., Hilton, D. R. & Varne, R. (1994). Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia. Earth and Planetary Science Letters, 126(15–22). https://doi.org/10.1016/0012-821X(94)90239-9.
Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P. & Hillenbrand, C. (2007). Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45. https://doi.org/10.6084/ m9.figshare.7439231.
GEBCO Compilation Group (2020). GEBCO 2020 Grid. Retrieved from https://doi.org/10.5285/ a29c5465-b138-234d-e053-6c86abc040b9.
GDAL/OGR contributors (2020). GDAL/OGR Geospatial Data Abstraction Software Library. Open-Source Geospatial Foundation. https://gdal.org [Online Accessed: 8 December 2020].
Gohl, K., Eagles, G., Udintsev, G., Larter, R. D., Uenzelmann-Neben, G., Schenke, H.-W., Lemenkova, P., Grobys, J., Parsiegla, N., Schlueter, P., Deen, T., Kuhn, G. & Hillenbrand, C.-D. (2006a). Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and PineIsland Bay. 2nd SCAR Open Science Meeting, 12-14 Jul, Hobart, Australia. https://doi.org/10.6084/m9.figshare.7435484.
Gohl, K., Uenzelmann-Neben, G., Eagles, G., Fahl, A., Feigl, T., Grobys, J., Just, J., Leinweber, V., Lensch, N., Mayr, C., Parsiegla, N., Rackebrandt, N., Schlüter, P., Suckro, S., Zimmermann, K., Gauger, S., Bohlmann, H., Netzeband, G. & Lemenkova, P. (2006b). Crustal and Sedimentary Structures and Geodynamic Evolution of the West Antarctic Continental Margin and Pine Island Bay. Expeditionsprogramm Nr.75 ANT XXIII/4 ANT XXIII/5, 11–12. https://doi.org/ 10.13140/RG.2.2.16473.36961.
Gunawan, E., Ghozalba, F., Syauqi, Widiastomo, Y., Meilano, I., Hanifa, N. R., Daryono & Hidayati, S. (2017). Field Investigation of the November to December 2015 Earthquake Swarm in West Halmahera, Indonesia. Geotechnical and Geological Engineering, 35(1) 425–432 https:// doi.org/10.1007/s10706-016-0117-4.
Harris, R. (2011). The nature of the Banda Arc–continent collision in the Timor region. In Arc-continent collision, 163–211. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-88558-0_7.
Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E.K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4–24. https://doi.org/10.1016/j.margeo.2014.01.011.
Harris, C. W., Miller, M. S., Supendi, P. & Widiyantoro, S. (2020). Subducted Lithospheric Boundary Tomographically Imaged Beneath Arc-Continent Collision in Eastern Indonesia. Journal of Geophysical Research. Solid Earth, 125(8), e2019JB018854. https://doi.org/10.1029/2019 JB018854.
Haryanto, I., Ilmi, N. N., Hutabarat, J., Gumelar, B., Adhiperdana, Fauzielly, L., Andriana, Y., Sendjaja & Sunardi, E. (2020). Tectonic and geological structures of Gunung Kromong, West Java, Indonesia. International Journal of GEOMATE, 19(74), 185–193. https://doi.org/ 10.21660/2020.74.05449.
Hinschberger, F., Malod, J. A., Dyment, J., Honthaas, C., Rehault, J. P. & Burhanuddin, S. (2001). Magnetic lineations constraints for the back-arc opening of the Late Neogene South Banda Basin (eastern Indonesia). Tectonophysics, 333(1–2), 47–59. https://doi.org/10.1016/S0040-1951(00)00266-3.
Honthaas, C., Réhault, J.P., Maury, R. C., Bellon, H., Hémond, C., Malod, J.A., Cornée, J.J., Villeneuve, M., Cotten, J., Burhanuddin, S., Guillou, H. & Arnaud, N. (1998). A Neogene back-arc origin for the Banda Sea basins: Geochemical and geochronological constraints from the Banda ridges (East Indonesia). Tectonophysics, 298, 297–317. https://doi.org/10.1016/S0040-1951(98)00190-5.
Hughes, B. D., Baxter, K., Clark, R. A., & Snyder, D. B. (1996). Detailed processing of seismic reflection data from the frontal part of the Timor trough accretionary wedge, eastern Indonesia. Geological Society, London, Special Publications, 106(1), 75–83. https://doi.org/10.1144/ GSL.SP.1996.106.01.07.
IHO-IOC. (2012). GEBCO Gazetteer of Undersea Feature Names.
Kawamura, K., Kuranaga, M. & Mochizuki, K. (2017). Early Diagenesis of Deep-Sea Sediments on Incoming Plates: Examples from the Izu-Bonin Trench and the Sunda Trench. GSA Annual Meeting in Seattle, Washington, USA, Paper No. 115-7. https://doi.org/10.1130/abs/2017AM-296938.
Kawamura, K., Kuranaga, M., Mochizuki, K. & Kanamatsu, T. (2020). The role of pre-subduction sediment diagenesis in a shallow tsunami-generated slip, Sunda Trench, south of Sumatra. Geological Society, London, Special Publications, 501, https://doi.org/10.1144/SP501-2019-44.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. (2013a). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42. https://doi.org/ 10.2478/s13533-012-0120-0.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. (2013b). Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. 54th International Conference Environmental & Climate Technologies. Riga, Latvia. https://doi.org/10.13140/RG.2.2.23026.96963.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. (2014). Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection, 85–90. https://doi.org/10.6084/m9.figshare.7434200.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458. https://doi.org/ 10.30638/eemj.2017.045.
Kreemer, C., Holt, W. E., Goes, S. & Govers, R. (2000). Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. Journal of Geophysical Research, 105(B1), 663–680. https://doi.org/10.1029/1999JB900356.
Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S. and Lemenkova, P. (2006): The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (ed). Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI. https://doi.org/ 10.13140/RG.2.2.11468.87687.
Lemenkova, P. (2011). Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 158 https://doi.org/10.13140/RG.2.2.16945.22881.
Lemenkova, P., Promper, C., & Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt E, Froese C, Turner AK, Leroueil S. (eds.) Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, Canada, 279–285. https://doi.org/10.6084/m9.figshare. 7434230.
Lemenkova, P. (2018). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35–42. https://doi.org/10.6084/m9.figshare.7434167.
Lemenkova, P. (2019e). Plotting Ternary Diagrams by R Library ggtern for Geological Modelling. Eastern Anatolian Journal of Science, 5(2), 16–25. https://doi.org/10.6084/m9.figshare. 11369955.
Lemenkova, P. (2019d). Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–194. https://doi.org/10.2478/pcr-2019-0015.
Lemenkova, P. (2019c). An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, 8(1), 1–9. https://doi.org/10.33714/masteb.486678.
Lemenkova, P. (2019b). Automatic Data Processing for Visualizing Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, 27(2), 72–89. https://doi.org/10.6084/m9. figshare.11544048.
Lemenkova, P. (2019a). Geospatial Analysis by Python and R: Geomorphology of the Philippine Trench, Pacific Ocean. Electronic Letters on Science and Engineering, 15(3), 81–94. https:// doi.org/10.6084/m9.figshare.11449362.
Lemenkova, P. (2020a). Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 75, 115-141. https://doi.org/10.17951/b.2020.75.115-141.
Lemenkova, P. (2020b). Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data. Central European Journal of Geography and Sustainable Development, 2(1), 5–15. https://doi.org/10.47246/CEJGSD.2020.2.1.1.
Lemenkova, P. (2020c). GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences, 5(1), 1–17. https://doi.org/10.28978/nesciences.691708.
Lemenkova, P. (2020d). Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3), 1-13. https://doi.org/10.2478/mgrsd-2020-0038.
Lemenkova, P. (2020e). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geodesy and Cartography, 46 (3), 98–112. https://doi.org/10.3846/gac.2020.11524.
Lemenkova, P. (2020f). Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute, 25, 129–138. https://doi.org/ 10.7427/DDI.25.14.
Lemenkova, P. (2020g). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics and Environment, 46(3), 205–222. https://doi.org/10.7494/geol.2020.46.3.205.
Lemenkova, P. (2020h). Insights on the Indian Ocean tectonics and geophysics supported by GMT. Risks and Catastrophes Journal, 27(2), 67–83. https://doi.org/10.24193/RCJ2020_12.
Lemenkova, P. (2020i). Seafloor Mapping of the Atlantic Ocean by GMT: Visualizing Mid-Atlantic Ridge Spreading, Sediment Distribution and Tectonic Development. Acta Geobalcanica, 6(3), 145-157. https://doi.org/10.18509/AGB.2020.16.
Maemunah, I., Suparka, E., Puspito, N. T. & Hidayati, S. (2015). Sedimentary deposits study of the 2006 Java tsunami, in Pangandaran, West Java (preliminary result). AIP Conference Proceedings, 1658, 050005. https://doi.org/10.1063/1.4915044.
McCloskey, J., Lange, D., Tilmann, F., Nalbant, S. S., Bell, A. F., Hilman, D., Natawidjaja & Rietbrock, A. (2010). The September 2009 Padang earthquake. Nature Geoscience, 3, 70–71. https://doi.org/10.1038/ngeo753.
Megawati, K. & Pan, T.-C. (2010). Ground-motion attenuation relationship for the Sumatran megathrust earthquakes. Earthquake Engineering and Structural Dynamics, 39(8), 827–845. https://doi.org/10.1002/eqe.967.
Nalbant, S. S., Steacy, S., Sieh, K., Natawidjaja, D. & McCloskey, J. (2005). Earthquake risk on the Sunda trench. Nature, 435, 756–757. https://doi.org/10.1038/nature435756a.
Nalbant, S., McCloskey, J., Steacy, S., NicBhloscaidh, M. & Murphy, S. (2013), Interseismic coupling, stress evolution, and earthquake slip on the Sunda megathrust. Geophysical Research Letters, 40, 4204– 4208, https://doi.org/10.1002/grl.50776.
Natawidjaja, D. H. & Triyoso, W. (2007). The Sumatran fault zone –from source to hazard. Journal of Earthquake and Tsunami, 1, 21-47.https://doi.org/10.1142/S1793431107000031.
Nishimura, S. & Suparka, S. (1990). Tectonics of East Indonesia. Tectonophysics, 181, 257-266. https://doi.org/10.1016/0040-1951(90)90019-5.
Nurwihastuti, D. W., Sartohadi, J., Mardiatno, D., Nehren, U. & Restu. (2014). Understanding of Earthquake Damage Pattern through Geomorphological Approach: A Case Study of 2006 Earthquake in Bantul, Yogyakarta, Indonesia. World Journal of Engineering and Technology, 02(3B), 61– 70. https://doi.org/10.4236/wjet.2014.23B010.
Patria, A. & Aulia, A. N. (2020). Structural and Earthquake Evaluations Along Java Subduction Zone, Indonesia. RISET Geologi dan Pertambangan, 30(1), (65-79). https://doi.org/10.14203/ risetgeotam2020.v30.1074.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406, https://doi.org/10.1029/2011JB008916.
Pickering, K. T., Pouderoux, H., McNeill, L.C., Backman, J., Chemale, F., Kutterolf, S., Milliken, K. L., Mukoyoshi, H., Henstock, T. J., Stevens, D. E., Parnell, C. & Dugan, B. (2020). Sedimentology, stratigraphy and architecture of the Nicobar Fan (Bengal–Nicobar Fan System), Indian Ocean: Results from International Ocean Discovery Program Expedition 362. Sedimentology, 67: 2248-2281. https://doi.org/10.1111/sed.12701.
Plank, T. & Langmuir, C. (1994). A. view from the Sunda arc. Nature, 367, 224–225 https:// doi.org/10.1038/367224b0.
Poetra, R. P., Adji, T. N., Santosa, L. W. & Khakhim, N. (2020). Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia. Aquatic Geochemistry, 26, 421–454. https://doi.org/10.1007/s10498-020-09384-w.
Saito, T. & Kubota, T. (2020). Tsunami Modeling for the Deep Sea and Inside Focal Areas. Annual Review of Earth and Planetary Sciences, 48:1, 121–145.
Salman, R., Lindsey, E. O., Feng, L., Bradley, K., Wei, S., Wang, T., Daryono, M. R. & Hill, E. M. (2020). Structural controls on rupture extent of recent Sumatran Fault Zone earthquakes, Indonesia. Journal of Geophysical Research: Solid Earth, 125, e2019JB018101. https:// doi.org/10.1029/2019JB018101.
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213.
Schenke, H. W. & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21. https://doi.org/10.6084/m9.figshare.7435538
Sieh, K. & Natawidjaja, D. (2000), Neotectonics of the Sumatran fault, Indonesia, J. Geophys. Res., 105(B12), 28295–28326, https://doi.org/10.1029/2000JB900120.
Straume, E. O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J. M., Abdul Fattah, R., Doornenbal, J. C. & Hopper, J. R. (2019). GlobSed: Updated total sediment thickness in the world's oceans. Geochemistry, Geophysics, Geosystems, 20(4), 1756–1772. https://doi.org/ 10.1029/2018GC008115.
Suetova, I. A., Ushakova, L. A. & Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142. https://doi.org/10.6084/ m9.figshare.7435535.
Tabei, T., Kimata, F., Ito, T., Gunawan, E., Tsutsumi, H., Ohta, Y., Yamashina, T., Soeda, Y., Ismail, N., Nurdin, I., Sugiyanto, D. & Meilano, I. (2015). Geodetic and Geomorphic Evaluations of Earthquake Generation Potential of the Northern Sumatran Fault, Indonesia. In: Hashimoto M. (eds). International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH). International Association of Geodesy Symposia, 145. Springer, Cham. https://doi.org/10.1007/ 1345_2015_200.
Titisari, A. D., Phillips, D., Prayatna & Setyaraharja, E. P. (2017). 40Ar/39Ar Geochronology of Volcanic and Intrusive Rocks in the Papandayan Metallic Prospect Area, West Java, Indonesia. Resource Geology, 67: 53– 71. https://doi.org/10.1111/rge.12118.
Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10), 1847–1864 https://doi.org/10.1029/2019EA000658.
Verstappen, H. T. (2014). Indonesian Landforms and Plate Tectonics. Indonesian Journal on Geoscience, 5(3). https://doi.org/10.17014/ijog.5.3.197-207.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V. & Wigley, R. (2015). A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8), 331–345. https://doi.org/10.1002/2015EA000107.
Wessel, P. & Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research, 101, 8741–8743. https://doi.org/ 10.1029/96JB00104.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F. & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos Transactions of the American Geophysical Union, 94(45), 409–410. https://doi.org/10.1002/2013EO450001.
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N. R., Susilo, S., Supendi, P., Shiddiqi, H. A., Nugraha, A. D. & Putra, H. E. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports, 10, 15274. https://doi.org/10.1038/s41598-020-72142-z.
Winarto, J. B., Sukiyah, E., Haryanto, A. D. & Haryanto, I. (2019). Sub Surface Active Fault Identification on Quaternary and Tertiary Rocks using Geoelectric Method in Cilaki Drainage Basin, Southern Part of West Java, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 9(5), 1563–1569. http://dx.doi.org/10.18517/ ijaseit.9.5.8111.
Refbacks
- There are currently no refbacks.